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Abstract: In this paper, we propose a novel progressive image transmission framework based

on spatio-temporal image decomposition and synthesis by the SD-CNN. In our method, we

redesign the baseline SD-CNN and the weighted sum is introduced in the accumulator. This

innovation enables lossless or near-lossless progressive image transmission. Experimental results

in various test images support that the image reconstruction performance of the SD-CNN has

dramatically improved by our method.
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1. Introduction
The progressive image transmission technique is widely used in remote sensing, medical images, and

telemedicine applications. In the progressive image transmission, an input image is transformed into

an image sequence. During reconstruction, a coarse approximation is firstly reconstructed by receiv-

ing a bit stream of early stages, then the quality of the reconstructed image is gradually enhanced by

adding subsequent sequence. Also, progressive image transmission is often desired for band-limited

communication channels since it can reduce the number of bits per transmission. Traditional progres-

sive image transmission can be categorized into two approaches [1–4]. One is a multi-resolution or

hierarchical coding method with the discrete wavelet transform (DWT). Most of this framework in-

corporates image compression methods. Especially, the JPEG 2000 and the SPIHT [5] are well-known

implementations. The other is the bit-plane method (BPM) that is the simplest implementation of

a progressive image transmission. This method utilizes the bit-plane decomposition. A n-bit im-
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age is decomposed into n bit-planes, where i-th bit-plane is given by the i-th bit of binary numbers

representing a pixel value. Meanwhile, a few bio-inspired approaches have been studied. [6] is a

well-known implementation, where radial basis function (RBF) networks are used as an interpolator

for image coding scheme. A majority of bio-inspired approaches are used in image coding frameworks,

while only a few methods achieve progressive image transmission framework utilizing a nature of the

biological system.

In the visual system, light is captured by the eyes, and its luminance value is converted to spatio-

temporal spikes by the retina. This functionality suggests that the visual system has the potential

of spatio-temporal image decomposition which is applicable to progressive image transmission. In

[7], we proposed the sigma-delta cellular neural network (SD-CNN) which enables a spatial domain

sigma-delta modulation. Like a sigma-delta modulation (SDM), a luminance value of each pixel is

represented by pulse density modulated bitstream. Since the CNN is also a mimic of the retina,

the essential functionality of the SD-CNN can be thought of a spatio-temporal decomposition of an

image. We experimentally showed that the SD-CNN can decompose a still image into a binary image

sequence and the quality of the reconstructed image is gradually enhanced by adding binary image

sequence. However, the development of the SD-CNN model that achieves high fidelity progressive

image transmission still remains an open research issue.

In this paper, we propose a spatio-temporal image decomposition for progressive image transmis-

sion by the SD-CNN. In our method, from the findings of the image compression framework using

CNNs [8], we redesign the SD-CNN to improve image reconstruction performance. This innovation

has dramatically improved the image reconstruction performance and enabled lossless or near-lossless

progressive image transmission. Furthermore, by taking the weighted sum of an output binary se-

quence, we improve the efficiency of the accumulator which recovers the input image from a binary

image sequence output by the SD-CNN. Since progressive image transmission by our method consists

of pulse density modulation of an image and its demodulation, the mechanism of our approach is

completely different from conventional methods which utilize the DWT and the BPM. The encoding

and decoding processes for progressive image transmission in the proposed method are as follows.

In the encoder, an input image is pulse density modulated by the SD-CNN, and we can obtain one

binary image at each iteration of the SD-CNN dynamics. Then the output binary image sequence is

transmitted to the decoder. In the decoder, the input image is restored via the accumulator, where

the weighted sum of each image in the binary image sequence is computed. This image recovery

process is inspired by the composition process of the BPM. Experiments on various grayscale test

images confirm that the proposed method has lossless or near-lossless progressive image transmission

performance.

The rest of this paper is organized as follows. In section 2, a novel high fidelity progressive image

transmission framework using the SD-CNN is proposed. Details of redesigning the SD-CNN is given,

and the definition of the new accumulator used in our method is described. Experiments on progressive

image transmission performance and efficiency are presented in section 3. Finally, some concluding

remarks are made in section 4.

2. Spatio-temporal image decomposition and progressive recovery by

sigma-delta cellular neural network

Figure 1 shows the encoder and the decoder of our proposed progressive image transmission frame-

work. A cell which is a processing unit of CNN and a pixel of the input image have a one-to-one

correspondence. Each cell is locally connected to its neighbors called r-neighborhood indicated by

the red rectangle in Fig. 1. Also, pixel values are converted to real numbers between -1 and 1 that

are corresponding to the dynamic range of CNN state variables.

In the encoder, an input image is decomposed into a spatio-temporal binary image sequence by

the dynamics of the SD-CNN. As shown in Fig. 2, we can obtain one binary image at each iteration

of the SD-CNN dynamics. In our method, we utilize the findings of CNN-based image compression

framework [8] and the SD-CNN is redesigned for high fidelity image reconstruction. The first few
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output images of the proposed method are very similar to that of the BPM indicated in Fig. 3. The

output sequence is transmitted to the decoder.

SD-CNNInput Image
Binary Image

Sequence

Gaussian
Filtering

Progressive
Recovery

Accumulator

Σ

Encoder
(Spatio-Temporal Image Decomposition by SD-CNN)

Decoder
(Image Reconstruction by Spatio-Temporal Synthesis)

Fig. 1: Proposed system

(a) 1st output (b) 2nd output (c) 3rd output (d) 4th output

Fig. 2: Example of output sequence of our method

(a) 8th plane (b) 7th plane (c) 6th plane (d) 5th plane

Fig. 3: Example of output sequence of the BPM

In the decoder, the original image is recovered progressively shown in Fig. 4 from a binary image

sequence by spatio-temporal synthesis. The processes of spatio-temporal synthesis is very simple as

described below. Each binary image becomes an input to the accumulator and its weighted sum is

calculated. To determine the weight for each binary image, we utilize the weighting of the bit-plane

restoration as a reference. That is, they are set so that the first output has the heaviest weight and

gradually decreases. Finally, the reconstructed image is obtained by applying the Gaussian filter to

the weighted sum of the binary image sequence.

(a) 1st recovered image (b) 2nd recovered image (c) 3rd recovered image (d) 4th recovered image

Fig. 4: Example of progressive image recovery by proposed method

2.1 The SD-CNN for high fidelity image reconstruction
The block diagram of a cell of the SD-CNN is illustrated in Fig. 5. The state equation of a cell at

the coordinates (i, j) is given by
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Fig. 5: The block diagram of a cell of the SD-CNN

xij(t+ 1) = ξxij(t) +
∑

C(k,l)∈Nr(i,j)

A(i, j; k, l)ykl(t) + uij , (1)

yij(t) = f (xij(t)) =

{
1 xij(t) ≧ 0,

−1 otherwise,
(2)

where xij(t), yij(t), uij , f(·), A(i, j; k, l) and ξ are the internal state, the output, the input of a cell,

the nonlinear output function, the A-template and the C-template, respectively. The r-neighborhood

Nr(i, j) is defined by Nr(i, j) = {C(k, l)|max{|k − i|, |l − j|} ≤ r}. The A-templates is defined by

A(i, j; k, l) = − 1

2πσ2
exp

(
− (k − i)2 + (l − j)2

2σ2

)
, (3)

where σ is a standard deviation of the Gaussian function.

In the baseline SD-CNN [7], the A-template, the C-template, and σ are empirically determined

parameters. Especially, an optimal σ depends on an input image. In our method, these parameters

are determined by referring to the design policy in [8]:

Design policy (i)

The A-template is designed so that its center A(i, j; i, j) is −1.

Design policy (ii)

The coefficient for xij(t) is defined to be zero.

Note that the following points regarding the design policy (i) and (ii). Although the convergence

condition of the CNN is A(i, j; i, j) = 0, in our method, a spatio-temporal image decomposition is

achieved by unsatisfying the convergence condition. For this reason, the proposed method adopts

design policies. In [8], once the A-template is designed so that its center A(i, j; i, j) is −1, then

A(i, j; i, j) is set to 0. The design policy (i) adopts the original design rule. A(i, j; i, j) becomes a

coefficient of xij(t), if xij(t) = yij(t). So, the design policy (ii) adopts xij(t) = 0 instead of the

convergence condition.

From the design policy (i) and Eq. (3), we get 2πσ2 = 1. This means that σ is independent of an

input image. For the design policy (ii), we assume that the output function f(·) is a piecewise linear

function defined by f(x) = min(1,max(−1, x)) and x is in its linear region. Then, the state equation

of the SD-CNN is rewritten as

xij(t+ 1) = ξxij(t) +A(i, j; i, j)xij(t) +
∑

C(k,l)∈Nr(i,j)
(k,l)̸=(i,j)

A(i, j; k, l)ykl(t) + uij (4)

= (ξ +A(i, j; i, j))xij(t) +
∑

C(k,l)∈Nr(i,j)
(k,l)̸=(i,j)

A(i, j; k, l)ykl(t) + uij . (5)

To satisfy the design policy (ii), we have ξ +A(i, j; i, j) = 0 from Eq. (5). Therefore, ξ is determined

as 1 since A(i, j; i, j) is -1.

2.2 Progressive image reconstruction by spatio-temporal synthesis
The output of the SD-CNN becomes the input of the decoding processes. The spatio-temporal syn-

thesis for image recovery consists of two parts. At the first, the accumulator calculates a weighted
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sum of the time series of each pixel. To determine the weight for the t-th image, we use the weighting

of the bit-plane restoration as a reference. Let Bi be the i-th plane image of the BPM for n bit image,

then reconstruction image I is given by I =
∑n

i=1 2
i−1Bi. In our method, we set the weights so that

the first output has the heaviest weight and gradually decreases. A weighted sum of the time series

of each pixel sij(t) is given by

sij(t) =
t∑

m=1

(t+ 1−m)yij(m) (6)

Finally, the reconstructed image at t-th iteration ũij(t) is obtained by applying the D-template.

ũij(t) =
∑

C(k,l)∈Nr(i,j)

D(i, j; k, l)skl(t), (7)

D(i, j; k, l) =
1

2πσ2
exp

(
− (k − i)2 + (l − j)2

2σ2

)
. (8)

3. Experimental Results

To evaluate the effectiveness of the proposed method, we perform image coding/decoding experiments

on standard grayscale images. An example of a coded image sequence and its decoding processes are

illustrated in Figs. 2 and 4. In all experiments, the r-neighborhood of the SD-CNN is set to r = 2,

and the maximum number of iterations is set to 256. The peak signal to noise ratio (PSNR) for an

average of the mean square error (MSE) is employed for objective performance criteria. Since some

images can be recovered without loss by the proposed method, the average PSNR cannot be calculated

(PSNR value for lossless reconstruction is infinity). Hence, PSNR for average MSE is employed for

an objective image quality measurement. Generally, if PSNR is higher than 40 dB, two images are

perceptually indistinguishable (visually lossless). Moreover, if the PSNR is higher than 50 dB, the

distortion between the reconstructed image and the original image reaches a near-lossless quality.

First, the progressive image transmission performance of our method is compared with the baseline

SD-CNN [7] and the first-order SDM. A pixel and the SDM have a one-to-one correspondence. There-

fore luminance of each pixel becomes an input to the corresponding SDM and an average output of a

period implies recovered luminance. In this experiment, we use 9 standard grayscale images indicated

in Fig. 6 from the dataset of [7]. Resolution of all images is 512 × 512.

Fig. 6: Test images from the dataset of [7]
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Fig. 7: Progressive image transmission performance of

each method

Progressive image transmission performance at each iteration is summarized in Fig. 7. In this

figure, the blue curve means the image reconstruction performance of our method, the purple curve

is that of the baseline SD-CNN, and the green curve is that of the SDM. The pink curve shows the

number of images that are reproduced losslessly by our method. From this figure, we can see that the
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reconstruction performance and efficiency of our method are much better than that of the baseline

SD-CNN and the SDM. In particular, only our method can recover all test images losslessly.

Our method achieves over 40 dB PSNR by only 12 iterations, and the PSNR of the baseline method

is always below 40 dB. The proposed method can achieve the same reconstruction performance of the

baseline SD-CNN by only 8 iterations. On the other hand, the SDM requires 58 iterations to achieve

the same performance as our method.

Next, we evaluate the performance of the proposed method and the SDM on a high-definition image

dataset. In this experiment, we use the Kodak photo CD [9] dataset1 shown in Fig. 8.

Progressive image transmission performance at each iteration is summarized in Fig. 9. In this

figure, the blue curve means the image reconstruction performance of our method, and the green

curve is that of the SDM. The pink curve shows the number of images that are reproduced losslessly

by our method. From this figure, we can see that the progressive image transmission performance

improves in proportion to the number of iterations. We also find that not all images can be restored

losslessly. The PSNR curve of the SDM towards around 50 dB by 256 iterations, meanwhile, our

method can achieve the same performance by only 33 iterations. Therefore, the reconstructed image

by the proposed method quickly reaches a near-lossless quality.

Fig. 8: The Kodak image dataset [9]

To evaluate the importance of each image in an image sequence, the starting position of the sequence

is varied from 1 to 256 while keeping the sequence length of 256. Experimental results are summarized

in Fig. 10 where the blue curve shows image reconstruction performance. We can see that the graph

drops rapidly and settles around 50 dB. This indicates that the first output of the SD-CNN has great

importance. We believe that this PSNR characteristic is reasonable because the first output of the

SD-CNN and the bit plane of the most significant bit in the BPM which plays the most important

role for the bit-plane synthesis, are very similar. Also, we can see that if the sequence length is long

enough, very high image restoration performance can be obtained.
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Fig. 9: Progressive image transmission perfor-

mance for the Kodak dataset
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Fig. 10: Evaluation of the importance of each im-

age in an image sequence

1This dataset consists of 24 color images and their resolution is 768×512. In this experiment, these images are converted
from the RGB color space to the ITU-R BT.601 YCbCr color space, and the Y images are used for the grayscale test
images.
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4. Conclusion
In this paper, a novel progressive image transmission framework based on spatio-temporal image

decomposition and synthesis by the SD-CNN has been proposed. In our method, the baseline SD-

CNN is redesigned and the weighted sum is introduced in the accumulator. Experimental results in

various test images support that this innovation has dramatically improved the image reconstruction

performance and enabled lossless or near-lossless progressive image transmission. It is also found that

the first output of the SD-CNN is most significant for image reconstruction.
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